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Abstract

The last two decades have witnessed significant expansions in the databases storing information on the sequences and structures of protein:
This has led to the creation of many excellent protein family resources, which classify proteins according to their evolutionary relationship.
These have allowed extensive insights into evolution and particularly how protein function mutates and evolves over time. Such analyses
have greatly assisted the inheritance of functional annotations between experimentally characterised and uncharacterised genes. Moreover, th
development of bioinformatics tools acts as a companion to the new technologies emerging in biology, such as transcriptomics and proteomics.
The latter enable researchers to analyse gene expression profiles and interactions on a genome-wide scale, generating vast datasets of proteir
many of which include experimentally uncharacterised proteins. Protein family/function databases can be used to help interpret this data and
allow us to benefit more fully from these technologies. This review aims to summarise the most popular sequence- and structure-based protein
family databases. We also cover their application to comparative genomics and the functional annotation of the genomes.
© 2004 Elsevier B.V. All rights reserved.
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1. Introduction (July 2004), compared to25,000 structures in the Protein
Databani{6].

Over the course of evolution, mutations in the nucleotide ~ The earliest protein family classifications exploited pair-
bases of genes canresultin numerous changes to the polypepwise sequence comparison to detect evolutionary relatives.
tide chains they encode. In addition, substantial insertions However, these methods become unreliable in the so-called
and deletions of residues may occur by various recombina- ‘Twilight Zone’ of sequence similarity (<30% sequence iden-
tion processes. These evolutionary mechanisms have givertity) [14]. Fortunately, the rapid expansion of the sequence
rise to families of proteins, which share a common ancestor databases over the past 10 years has increased the populations
but often exhibit considerable divergence in their sequenceof the protein families, enabling the derivation of family-
and structure. Frequently, this diversity is accompanied by based sequence profiles and motifs.
changes in protein function. However, some protein fami-  Protein motifs represent small, highly conserved stretches
lies, such as the globins, retain a specific biological function of contiguous sequence, which may be associated with a par-
despite high sequence diversity. ticular evolutionary family or biological function. Searching

The earliest database of protein families was pioneeredfor these recurring ‘fingerprints’ is often successful where
in the late 1970s by Margaret Dayhoff at the MIPS Insti- global sequence similarity becomes unreliable. In a more
tute in Germany and used to model the tolerances to differ- sophisticated way sequence profile methods, such as Hid-
ent amino acid substitutions occurring through evolution. A den Markov Models (HMMs)26] and PSI-BLAST[1], have
plethora of protein family classifications have arisen over the made it possible to capture the probability of certain residue
subsequent 20 years, affording interesting insights into evo- mutations and insertions/deletions occurring in the sequence
lutionary processes. Moreover, they have provided compre-relatives of a given protein familji8,30] These have been
hensive bioinformatics resources that may be used for inherit- shown to be highly discriminatory in identifying distant ho-
ing functional information from experimentally characterised mologous relationships when searching sequence databases.
genes to their sequence or structural relatives. Powerful ho- Despite the success of the new profile methods, very dis-
mologue detection algorithms are combined with manual val- tant homologues often remain undetectable. Hence, most
idation to supply information on evolutionary relationships sequence-based protein family classifications tend to group
that are undetectable by simple sequence searching methelosely related sequences. Family members share significant
ods, such as BLAST. There is an ever-increasing amount of sequence similarity and may possess similar or identical bi-
sequence data being generated from high-throughput meth-ological functions. Many resources choose to cluster whole
ods such as genome sequencing projects, transcriptomics angrotein chains. However, databases such as Pfam now identify
proteomics. As a consequence, it is an impossible task toseparate domains within genes, often detected using proteins
functionally characterise all proteins by experiment. As well structure data, and group them accordingly. Thus, one gene
as providing important data on evolutionary mechanisms, may comprise several domains that are members of different
grouping genes into protein families offers a valuable re- protein families. In reviewing the databases, we highlight the
source for integrating information on cellular and molecular distinction between those which cluster whole protein chains
function. and those which focus on the domain level.

In this review we aim to describe the most widely used Table 1summarises the current populations of the ma-
sequence- and structure-based protein family classificationgor sequence family databases and the methodologies used
and consider the benefits gained from integrating these withto create them. An important recent development has
databases of functionally annotated genes. To date, these rebeen the establishment of the InterPro Databd88],(
sources have been chiefly exploited to explore the evolu- http://www.ebi.ac.uk/interpnaat the EBI, in the UK. This re-
tionary relationship between sequence, structure and pro-source integrates all the major protein family classifications
tein function. We shall summarise some of the key works and provides regular mappings from these family resources
in genome annotation and comparative genomics and thenonto primary sequences in the UniProt database which con-
discuss the potential applications of protein family resources tains over 800,000 sequences as of July 2004. InterPro, the
in functional genomics and proteomics. Integrated Resource of Protein Families, Domains and Sites,

is a collaboration that aims to provide an integrated interface

of protein signature databases. Databases in the collabora-
2. Sequence based protein family classifications tion include UniProt, PROSITE, PRINTS, Pfam, ProDom,

SMART, TIGRFAMSs, PIR SuperFamily, SUPERFAMILY

Since protein structure determination is considerably more and Gene3D.
time consuming that gene sequencing, the sequence reposi-
tories have always been several orders of magnitude larger,
than the structure databases. There has, in fact, been an ex-
ponential increase in the sizes of both types of data since Pfam[4] is a highly comprehensive resource providing
the early 1970s but the largest sequence database, GenBardn optimised set of Hidden Markov Model profiles for pro-
[5] still contains nearly one million non-redundant sequences tein domain families. Families are defined using multiple

.1. Families of sequence domains


http://www.ebi.ac.uk/interpro

Table 1

Protein family resources

Resource Group Source(s) No. families Method URL
PRINTS Zygouri SWISSPROT, TrEMBL 1800 entries, 10,931 motifs Iterative motif searches  http://bioinf.man.ac.uk/dbbrowser/PRINTS
Pfam Eddy SWISSPROT, TrEMBL 7459 families HMM http://www.sanger.ac.uk/Software/Pfam
SMART Bork Selected proteins 667 domains HMM http://smart.embl-heidelberg.de
ProDom Kahn SWISSPROT, TrEMBL 501,917 families (186,303 PSI-BLAST http://protein.toulouse.inra.fr/prodom/current/
non-singleton) html/home.php
InterPro Zbobnov UniProt, PROSITE, PRINTS, Pfam, 11,007 entries (including 2573 Multiple methods (HMM, http://www.ebi.ac.uk/interpro
ProDom, SMART, TIGRFAMs, PIR domains, 8166 families) PSI-BLAST, regular
SuperFamily, SUPERFAMILY expression)
TIGRFAMs White SWISSPROT, TrEMBL 1976 families HMM http://www.tigr.org/TIGRFAMs/index.shtml
ADDA Holm SWISSPROT, TrEMBL, PIR, PDB, 34,000 families (plus 60,000 http://ekhidna.biocenter.helsinki.fi:8080/examples/
WORMPEP, ENSEMBL singleton) servlets/adda/index.html
CHOP Rost 62 complete genomes 63,300 clusters (plus 118,108 PSI-BLAST http://cubic.bioc.columbia.edu/services/CHOP
singleton clusters)
TRIBES Ouzounis 83 complete genomes 60,934 or 82,692 depending TribeMCL http://maine.ebi.ac.uk:8000/services/tribes
on granularity
ProtoNet Linial SWISSPROT, TrEMBL User-defined BLAST http://www.protonet.huji.ac.il
SYSTERS Vingron SWISSPROT, TrEMBL, ENSEMBL 158,153 disjoint clusters BLAST http://systers.molgen.mpg.de/
(complete genomes), the Arabidopsis
Information Resource, SGD and
GeneDB
iProClass Wu PIR, SWISSPROT, TrEMBL, Pfam, 36,000 PIR superfamilies, N/A http://pir.georgetown.edu/iproclass
BLOCKS, PRINTS, ProSite, PDB, 100,000 families
COG
SWISSPROT Schneider Primary database 153,871 proteins N/A http://us.expasy.org/sprot
COG/KOG Natale 66 unicelluar and 7 eukaryotic complete 4873 COG, 4852 KOG Bidirectional best hit http://www.ncbi.nim.nih.gov/COG

genomes
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sequence alignments and HMMs and cover many commonrelated algorithm, CHOR32] designed by Liu and Rog32],
protein domains and families. Pfam consists of two parts, the assigns domain boundaries by BLAST sequence comparison
first is the curated part of Pfam (Pfam-A), the second is an and then clusters the subsequent domain-like fragments into
automatically generated supplement called Pfam-B. sequence families using the CLUP clustering method. Re-
Similarly, simple modular architecture research tool cently, 62 completed genomes were chopped and clustered
(SMART) [31] domain families have been selected with a into 118,108 single and 63,300 multi-member clusters.
particular emphasis on mobile eukaryotic domains and as There is an ever-increasing number of web-accessible se-
such are widely found among nuclear, signalling and extra- quence based classifications of protein families (sdxe J).
cellular proteins. SMART domain families are annotated with The number of families identified by those performing auto-
function, sub-cellular localization, phyletic distribution and mated clustering of large sequence repositories varies from
tertiary structure. 65,000 to 186,000 depending on the philosophy. Ouzounis
COG and KOG are databases of clusters of orthologousand co-workerg15] recently revealed that each newly se-
groups of proteins, defined by groups of three or more pro- quenced genome leads to an increase in the total number of
teins in complete genomes. KOG contains seven eukary-proteinfamilies characterised. Thatis, currently a certain pro-
otic genomes whilst COG contains 66 complete unicellular portion of genome sequences (between 10 and 25%) in every

genomes. genome are singletons, or belong to families not present in
other sequenced genomes. This may reflect limitations in the
2.2. Families of whole protein chain sequences current sequence based homologue detection algorithms; or

alternatively these may be genuinely novel families that have
TIGRFAMSs [19] protein families are built in a similar  arisen following speciation. The organism-specific families
fashion to Pfam but also contain whole protein chains. Pro- may be important for expanding the functional repertoire and
toNet developed by Linial and co-workdEs3], uses alterna- ~ phenotype of the organism, perhaps by providing new bio-
tives clustering methods to group in the UniProt database onlogical processes or changes in gene regulation.
the basis of sequence similarity. Proteins from the TrEMBL
repository are later added into these initial protein clusters.
The ProtoNet protocol can produce protein family clusters 3. Structure based protein family classifications
from three different clustering methods: harmonic, geomet-
ric and arithmetic. Despite the advances in sequence comparison methods,
The PRINTS databag8] is a collection of protein ‘fin- remote homologues in the ‘Midnight Zone’ of sequence
gerprints’: conserved sequence motifs used to characterise aimilarity (<15% identity) described by Rost, can still only
protein family. These motifs are generated via multiple pro- be identified through protein structure compari$68,44]
tein sequence alignments by identifying regions of local se- Therefore, structure-based classifications are becoming in-
guence conservation. They can subsequently be used to scanereasingly important resources for recognising these distant
larger sequence set (e.g. UniProt and TrEMB]) to recruit relatives and providing datasets for more far-reaching analy-
new family members. The majority of families are defined ses of protein family evolution.
by multiple motifs and must all be present for arelative tobe  The earliest protein structures were solved inthe 1970s and
added to the group. deposited in the Protein Databank (PD)&,). This resource,
The SYSTER$27] and TRIBEJ15] methods use graph-  which is now based in the Research Collaboratory of Struc-
based methods and Markov clustering respectively to gener-tural Biology (RCSB) Rutgers University, contains around
ate protein families of varying granularity. 25,000 protein structures comprising more than 60,000 in-
A number of other resources exist that automatically clus- dividual protein domains. Since the early 1990s, there have
ter sequences from the completed genomes or from the largebeen sufficient structures to cluster evolutionary relatives into
sequence repositories (e.g. GenBank or Swissprot-TrEMBL) protein families and superfamilies. This has givenrise to com-
into putative domain families. The ProDom resoufbé] prehensive hierarchical databases of protein structures, such
contains protein sequence families derived from sequences iras CATH and SCOP, which rely on a combination of manual
UniProt and TrEMBL. These protein sequences are choppedexpert classification and structural comparison methods.
into protein domains using an iterative PSI-BLAST domain In their pioneering analysis of protein structural families,
boundary prediction program. Chothia and Lesk8] first demonstrated the degree to which
Heger and Holnj21] recently developed the ADDA algo-  protein structure appears to be more conserved than sequence
rithm to cluster sequences into domain families. ADDA takes during evolution. This has been reaffirmed by recent analy-
alignments from all-against-all sequence comparison to de-ses of larger structural classificatiof@®]. Fig. 1 shows the
fine domains within protein sequences, which are then clus- relationship between sequence similarity and structure simi-
tered into domain families. Recently, almost 800,000 non- larity for allhomologous relatives in the CATH domain struc-
redundant sequences were condensed into 100,000 domaiture database. Many of the very distant relatives below 20%
families (33% of the families containing more than one mem- sequence identity are paralogous relatives, arising from du-
ber) covering all of the currently available sequence space. Aplication of a domain within the genome. Once duplicated,
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100 to detect similarities between evolutionary relatives. Struc-
SRE oo ture comparison and alignment algorithms were first intro-

duced in the early 1970s and the rigid body superposition
methods developed then, by Rossmann and Argos, are still
P » used today for superposing structures and calculating a sim-
ilarity measure (root mean square deviation, RMSD). This
is achieved by translating and rotating the structures relative
to one other until the difference between putative equivalent
residues is minimised. Unfortunately, this approach runs into
problems when aligning distant homologues that may con-
T . i e S i R ) tain extensive insertions and deletions of residues or shifts
e B h B B 5 B B in the orientations of equivalent secondary structures. There-
sequence identity (%) fore, more complex alignment algorithms based on dynamic

programming, secondary alignment and fragment compari-
Fig. 1. Correlation between structure similarity (measured by the SSAP son have been developed

structure comparison algorithm, 0—100) and sequence similarity (measured Initiallv. manv protein structure classifications use rapid
by sequence identity) for all pairs of homologous domain structures in the y: yp p

CATH domain database. secondary structure-based approaches to rapidly identify
putative relatives before applying slower, more accurate
residue based methods (e.g. GRATH—CATH database
[22]; SEA—COMPASS Databadd8]). As with sequence
database searching, the value of many of these fast ap-
proaches is that they allow a large number of comparisons
to be performed from which a rigorous statistical framework
can be built for assessing the significance of any mgizh
o . . There are far fewer secondary structures than residues and
3.1. Recognising domain boundaries since most insertions and deletions occur in the loop regions
N connecting the secondary structures, this helps to eliminate
As well as the recognition of very remote homologues, he ‘noise’ created by the structural embellishments arising
structural data can help in determining the domain compo- from divergent evolution of distant homologues. However,
sition of a protein. Currently, approximately 40% of known e computationally intensive residue-based algorithms
structures are multi-domain proteins and this proportion is (e.g. COMPARER[51]; SSAP[60]; STAMP [49]; DALI
likely to rise as the techniques for structure determination [23]; CE[54]) result in accurate structural alignments. Rather
advance. ltis difficult to recognise in_dividual domains using than simply attempting to superpose equivalent residues be-
sequence data alone. However, Teichmann and co-worker§yeen protein structures, many of these methods compare the
[2] have recently suggested from sequence analysis of com4nterna| distances between residues within the same structure

pleted genomes, that at least two thirds of proteins within a tq glign residues with similar sets of internal distances.
genome are likely to be multi-domain proteins. This propor-

tion could be as high as 80% in eukaryotic organisms. 3.3. Protein structure classifications
Many algorithms have been written for recognising do-
main boundaries from structural data. These often exploitthe  The two major protein structure classifications, CATH and

fact that there are more contacts between residues within agcop, focus on structural domains, classifying them into
domainthan between differentdomains. Others searchfor hy-eyg|ytionary superfamilies. These are further organised into

drophobic clusters that could represent domain cores. Manyg pierarchical schema, the top level of which corresponds
domains have also been duplicated and combined with dif- {5 the protein class—the proportion of residues adopiing
ferent partners during evolution. This forms the rational for pejical or g-strand conformations. This gives rise to three
methods that exploit domain recurrence to match domains in major classes, mainly; mainly-8 anda—, although SCOP
newly determined structures againstlibraries of classified do- gjyiges the alpha-beta class into alternatifig anda + 8, de-
mains (e.g. PUU methd@2]). As there can be considerable pending on the segregation @fhelices ang-strands along
structural variation in some protein families (see below), most the polypeptide chain.
classification resources (e.g. SCOP, CATH) manually vali-  \jithin each class, structures are further clustered into fold
date domain boundaries identified by automated approachesgroups when they possess significant structural similarity. To
share the same fold, both the arrangement of secondary struc-
3.2. Structural comparison algorithms tures in 3D and the connectivity between them should be
similar. The CATH database also recognises an intermediate
To facilitate the construction of structure-based family level between class and fold in which structures are classified
databases, some groups have developed automated method@scording to the orientations of the secondary structures in

SSAP score

the paralogous gene frequently evolves a new function. By
recognising such relationships, the structural classifications
have provided some important insights into the evolution of
protein function within protein families.
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3D. This architecture level describes the shape of the struc-
ture (e.g. barrel-like or layered sandwich) and can be helpful
in imposing an additional level of order within each pro-
tein class. Finally, proteins adopting highly similar folds and
further evidence of an evolutionary relationship (e.g. simi-
lar sequence motifs or shared functional characteristics) are
grouped into the same homologous superfamily. Within these
superfamilies, proteins are often further sub-clustered into
families of close relatives possessing very similar functional
properties.

The SCOP database was established in 1993 by Murzin
et al. [36] and uses almost entirely manual validation for
recognising structural similarities between proteins to gen-
erate evolutionary superfamilies. Although time consuming,
this has resulted in a very high quality resource where domain
boundaries are also manually assigned. Inthe CATH database
[39], a combination of manual and automated approaches
is used. Robust structure comparison methods (SBAP
CORA [40], GRATH [20]) have been developed to recog-
nise structural relatives; although evolutionary relationships
are only assigned following manual assessment of all avail-
able data. Several automatic methods are used for domain
boundary recognition but, again, assignments are all manu-
ally validated Table 2shows that SCOP and CATH recognise
around 800-fold groups and some 1200-1500 superfamilies
in the current set of protein structures.

In contrast, the DALI domain database (DDD) established
by Holm and co worker$12,13] uses a completely auto-
mated protocol. Domain boundaries are recognised using the
PUU algorithm[22] and domains are assigned to fold groups
and superfamilies using the robust DALI structure compari-
son algorithm22]. Thresholds for clustering the structures
are based o#-scores, calculated by scanning new domains
against all representative structures in the database. An ex-
cellent web-based search engine at the EBI in Cambridge
(http://lwww.ebi.ac.uk/da)ihas been developed for scanning
new structures to identify putative relatives, which is widely
used by structural biologists.

The HOMSTRAD and CAMPASS databases, constructed
by Blundell and co-workerf34,55,56] are not hierarchical
but focus on using SCOP, PFAM and other resources to
cluster together families of evolutionary relatives, often
with high sequence homology. An additional feature is
the provision of validated multiple structural alignments
for families and superfamilies that can be used to derive
substitution matrices or to encode conserved structural
features in a template—these can be used to identify further
relatives. The CAMPASS database groups more distant
structural homologues than HOMSTRAD by using the
structural comparison algorithms COMPARER and SEA to
generate multiple alignments from SCOP superfamilies.

Aside from resources that explicitly assign structures to
fold groups and superfamilies, a number of ‘neighbourhood’
databases exist. These use automated structural comparison
methods to search the PDB for structural neighbours to a
query structure. The Entrez resource at the NCBI uses the

Table 2

Protein structure family resources

URL

Structure-based sequence alignments of http://www-cryst.bioc.cam.ac.ukkampass

Type
SCOP superfamilies

Structure comparison method

Coverage (July 2004)
7580 domains in 1409 COMPARER[51], SEA[48]

superfamilies

Location and author

Database

Cambridge University, UK,

Sowdhamini

CAMPASS

Automatic structural and sequence compari- http://www.biochem.ucl.ac.uk/bsm/cath

son methods are combined with manual val-

58,000 domains in 1459  SSAP[60], GRATH [20]

superfamilies

UCL, London, UKQrengo

CATH/Gene3D

idation of superfamily alignments and do-

main boundaries

http://cl.sdsc.edu/ce.html

Fully automatic, nearest neighbours

CH54]

All chains in PDB

SDSC, La Jolla, CA, USA,

Bourne

CE

http://www.biochem.ucl.ac.uk/bsm/dhs

Fully automatic multiple structure align-

1459 superfamilies in SSAP[60], CORA[37]

CATH

UCL, London, UK

DHS

ments of close relatives in CATH superfam-

ilies

http://www.ncbi.nih.gov/Structure/MMDB/

mmdb.shtml

Manual classification of close protein homo- http://www-cryst.bioc.cam.ac.ukhomstrad

Fully automatic, nearest neighbours
logues

Allin PDB VAST [64]

NCBI, Bethesda, MD, USA,

Bryant

ENTREZ/MMDB

COMPARER[51]

7500 domains in over
1400 superfamilies

Cambridge University, UK,

Blundell

HOMSTRAD

http://scop.mrc-Imb.cam.ac.uk/scop

Manual classification

54,745 domains in 1294 Manual

Cambridge,
superfamilies

LMB-MRC,
UK, Murzin

SCOP/SUPERFAMILY
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VAST algorithm to identify its structural matches. The PDB 4.1. Sequence and structure based methods for detecting
has recently established a similar resource that uses the CHlistant homologues
algorithm to detect relatives and calculates a probabilistic
value for significance. Similarly, the Macromolecular Struc- As discussed in Sectiah in order to recognise relatives
ture Database (MSD) which is the European node of the PDB in the ‘Midnight Zone’ of sequence similarity, the most pow-
uses the SSM algorithm, to find putative relatives. erful profile methods must be used. Perhaps the most widely
used profile-based method is PSIBLASIT, although Hid-
den Markov Models generated using the SAM-T99 technol-

4. Assigning complete genome sequences to protein ogy of Karplus and co-workef86] have recently been shown
families and exploiting this data in structural to recognise a significant proportion of distant homologues.
genomics Profile—profile methodgl] and Threading technologies are

even more powerful but are prohibitively slow for performing
Although relatively few protein structures have been de- large scale comparisons.

termined to date~4000 non-identical), recent genome anal- One of the most important developments has been the
yses suggest that we currently have structural representaintroduction of benchmarking protocols to determine reli-
tives for many of the most highly populated families in na- able thresholds for accurate homologue detection. These
ture [30]. Several groups have used Hidden Markov Mod- approaches were originally pioneered by Chothia and co-
els (SUPERFAMILY[17], Gene3[030]) and combined pro-  workers[42] and use datasets of carefully validated, remote
file/threading based protocdl33] to assign sequences from homologues, detected by structure comparison from both the
completed genomes to structural families in the SCOP or SCOP[42,18] and CATH structure classificatiorfS0,44).
CATH databases. Currently between 30 and 80% of se- Recent analysis, using the CATH domain database in June
guences or partial sequences in a genome can be assigne2003, showed that approximately 83% of homologous pairs
to a structural family in one of these databases, depending orwith less than 35% sequence identity could be recognised
the organism and the technology used. A further 15-20% of using the SAM-T9926] approach.
sequences can be assigned to families in the Pfam database, Fig. 2shows that the families recognised in the genomes
suggesting that a very high proportion of genome sequencegollow power-law like behaviour. That is, for all types
can now be classified in well-characterised and carefully cu- of families (e.g. CATH, Pfam, uncharacterised) the vast
rated superfamilies. majority of families are small and only occur once or a few
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times in a genome. By contrast, there are a small percentagewithin individual protein families. It is outside the scope
of extremely large superfamilies that occur many times of this review to consider all these analyses. However, the
in a genome. Recent analyses of bacterial genomes usinguccess of the international genome initiatives, which has
Gene3D annotations has revealed that fewer than 30 CATHIed to the complete sequencing of nearly 200 genomes, has
superfamilies (<5% of the total number of superfamilies) recently enabled some interesting large scale analyses on
are responsible for almost 50% of the domain annotations tothe distribution of protein families within and across or-
genome sequences. ganisms in the different kingdoms of life. Exploiting the
Many groupg18,30] have shown that a significant pro- structural data in particular, allows more ancient evolution-
portion of the sequences unassigned to characterised famiary relationships to be tracked and can therefore give a
lies (i.e. SCOP, CATH, Pfam) belong to very small protein clearer picture of evolutionary trends. Below, we briefly con-
families or are singletons. That is they are not found in any sider some of the insights gleaned over the last few years
other species and may be contributing in some way to the by analysing the distribution of structural families in the
specific functional repertoire of the organism. Analyses of genomes.
the Gene3D database revealed that many of these sequences The huge expansion in the sequence repositories together
are small and likely to consist of a single dom{80]. Rost with improvements in technologies for detecting distant evo-
has demonstrated that a significant portion are predicted tolutionary relationships (e.g. PSIBLAST, HMMS, see above)
have low secondary structure content, suggesting that theyhas led to the nearly tenfold expansion of the structural family
may only adopt a functional conformation on binding to an- databases (SCOP, CATH) with sequence relatives from the
other protein and/or that they may be peptides involved in genomes (e.g. see SUPERFAMILY, Gene3D, see above and
regulation. Table 9. The additional functional information this brought
It is possible to use this genome annotation data and theto these resources recently led to an evaluation of the ways in
extent to which protein superfamilies merge once structural which protein functions can be modified in family relatives
data is acquired, to estimate the number of superfamilies andduring evolution. More specifically, analysis of enzyme fam-
folds in nature. Estimates range from a few thousand folds ilies showed that although close relatives40% sequence
to hundreds of thousands of superfamilies and folds depend-identity for single domain proteing;:60% sequence identity
ing on the approach us¢ti0]. As mentioned above, Ouzou- for multi-domain proteins) were likely to share common func-
nis and co-workers have shown that each sequenced genomsons, in some families considerable functional divergence
brings new protein families with no sign of saturation in the could occur between remote homologues or paralogues dur-
near future. With new species constantly being discovered, ing evolution[63].
for example by shotgun sequencing of environmental sam-  Todd et al[63] performed extensive analyses of the mech-
ples, it is difficult to estimate an upper limit for the number anisms by which function changed 30 exceptionally
of protein families in nature. However, the trends observed to promiscuous CATH enzyme superfamilies. Following dupli-
date suggest that the majority of these will be small and or- cation of a domain during evolution, functional divergence
ganism specific, whilst up to 70-90% of sequences within an was frequently associated with changes in domain partner-
organism will be assigned to fewer than 2000 characterisedships of these paralogous domains. Differences in oligomeri-
protein families 500 in CATH;~1500 in Pfam). sation state were also observed. In some cases, residue in-
One important use of these genome annotation resourcesertions had resulted in large structural embellishments that
is to identify structurally uncharacterised superfamilies that had modified the active site or created additional interaction
are likely to possess a novel fold or function, so that these cansites on the protein surfaces. Whilst in some relatives, muta-
be targeted for structural determination. Structural genomicstions of just a few residues in the active site were sufficient to
initiatives are currently in progress in several countries and significantly alter the function. Interestingly, these modifica-
approximately 500 new structures have been solved by thesdions were mostly associated with changes in the substrate
initiatives over that last 3 years. Interestingly, although fam- specificities. By contrast, many features of the chemistry
ilies with no structural representatives were targeted, only performed by the enzyme were conserved—for example, a
15% of the structures were observed to be novel folds once thechemical intermediate along a reaction pathway.
structures were solved. Inthe future, targeting the large, struc-  These observations were supported by several related anal-
turally uncharacterised, Pfam superfamilies will help to pro- yses investigating the recurrence of structural families in
vide structural representatives for the majority of the genome the small molecule, metabolic pathways Bf coli [47,2].
sequences. The studies suggested that enzymes were often recruited
to a new pathway during evolution, to provide a specific
chemistry, leading to a patchwork model of pathway evo-
lution (Horowitz model). Serial recruitment of homologous
enzymes along the same metabolic pathway, because they
provided similar active site geometries for binding sub-
Over the last two decades protein family resources have strates/products of reactions, occurred much less frequently
been used extensively to analyse evolutionary relationships(Jensen model).

5. Recentinsights into protein evolution from
comparative genome analysis using protein structure
family resources
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More general analyses of domain family recurrencesinthe  3s00
genomes, pioneered by Teichmann and co-workai&0],
illustrated the extent to which domain duplication occurred
within genomes. Some families are much more extensively
duplicated than others, leading to the power-law like be-
haviour shown inFig. 2 These data mirrored the earlier
analyses of structural families in the early 1990s, which had
also revealed bias in the population of domain families. The
analysis of Teichmann’s and others showed that the most
commonly recurring families were often associated with im-
portant generic functions, such a providing energy or redox & 400 6000 8000 10000 12000 14000 18000
equivalent for a chemical reaction. Other recurrent domains TG S
were involved in information exchange and DNA binding. (open reading frames. ORFs)

Many of these analyses are dominated by sequences from

bacterial genomes as until recently there were only a few com- Fig. 3. The balance between expansion of metabolic families and regulatory

: families with increase in genome size. The linear increase in the number of
pIeter sequenced eUkaryOtIC genomes. In JU|y 2004, theredomains primarily involved in metabolism are shown by the thick black line,

were still On_ly 16_Comp|9te eukaryotic genomes_avallable_. A whilst the non-linear increase in the number of domains primarily involved
survey of microbial genomes can therefore provide a statisti- in regulation are shown by the dotted line.

cally more reliable snapshot of the evolutionary mechanisms
occurring within this kingdom. Surveying some 90 bacterial the metabolic repertoire, the optimal balance between these
genomes, Ranea et §#i5] recently showed that although two types of families occurs in the most frequently observed
there appeared to be around 200 structural superfamilies comgenome size for non-specialist bacteria. That is, bacteria hav-
mon to all bacterial genomes, a smaller subset of about 60 ofing no specialised dietary or environmental requirements.
these were very massively duplicated, accounting for nearly
50% of the domain annotations in the genomes. In these fam-
ilies, the number of relatives found in any genome increased 6. Exploiting protein family resources to facilitate
with genome size. analysis of functional genomics data
Detailed analysis showed that these superfamilies were
predominantly associated with the COG functional categories  Studies investigating the extent to which function is con-
of metabolism and regulation. Although, some variation in served between homologues are important for exploiting pro-
the functional categories was obseryéf], the trends were  tein family resources to functionally annotate sets of genes
very clear. For metabolic superfamilies, the increase in num- being studied in large scale functional genomics experiments
ber of relatives with genome size was found to be linear and (e.g. transcriptomics and proteomics). As discussed above,
was associated with a high duplication rate. In the super- the results of several groups suggests that, for enzyme fam-
families associated with regulation, a non-linear relationship ilies, there should be at least 30—40% sequence identity be-
was observed with a lower average duplication rate. Thesetween relatives to be reasonably confident that they share
contrasting behaviours leads to a balance between the popa common or related function. For multi-domain proteins,
ulations of the two superfamilies (s&ég. 3 so that at a higher levels of sequence similarity (50-60%) may be re-
given genome size the number of regulatory families starts quired[63]. Obviously it is helpful to consider the domain
to outnumber the metabolic families. composition or architecture before inheriting functional in-
This observation supports earlier hypotheses which sug-formation, as changes in this architecture can be clearly re-
gested that in bacteria, gene duplication within metabolic su- sponsible for modulating protein function.
perfamilies, followed by functional divergence of these par- Protein family resources that provide information on do-
alogous genes, is a mechanism for expanding the functionalmain partnerships are useful in this context. Recent versions
repertoire of an organism and can give rise to new pheno- of the Pfam website now provide information on domain
types. However, the existence of multiple copies of a gene, compositions  [fttp://www.sanger.ac.uk/Software/Pfam
albeit with slightly modified functions, can start to lead to The MIPS resource in Germany also clusters multi-domain
‘noise’ and necessitates increased regulation. Thus the nonproteins according to domain composition and is therefore
linear increase in the regulatory repertoire may represent thea valuable resource for checking degree of homology and
organism’s response to tempering this noise. It may also be asdikely functional similarity between proteins. In the Gene3D
sociated with additional regulatory mechanisms for expand- resource, domain compositions are described by the CATH
ing the functional repertoire by controlling the expression and Pfam annotations assigned to each prd8flh
and activation of these paralogues in alternative ways. Another important development in the use of bioinfor-
Nevertheless, it is intriguing to note that if the increase in matics resources to assist analysis of functional genomics
regulatory genes is viewed as cost that must be endured in or-data is the plethora of specialised functional databases estab-
der to benefit from the additional value brought by expanding lished over the last decade. The enzyme (EC) and UniProt
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Fig. 4. The percentage of sequences in Gene3D that can be associated with a functionally-annotated gene by alignment, at a range of sequetadisidentity ¢

databases are widely used and provide useful and stan-7. Conclusions

dardised functional descriptions. More recently, the gene

ontology (GO) developed by Ashburner and co-workers  The last two decades have withessed significant expan-

[62] has played a significant role in producing a compre- sions in the databases storing information on the sequences

hensive and widely accepted scheme for describing func-and structures of proteins. This has led to the creation of

tion at different levels; molecular function, molecular pro- many excellent protein family resources (Jables 1 and @

cess and cellular localisation. A range of other databaseswhich classify these proteins according to their evolution-

describing biological processes (KEGI@5], WIT [41]) ary relationship. Analyses of protein evolution and in par-

and protein—protein, protein—ligand interactions has also ap-ticular the manner in which function is modified between

peared (BIND, DIP, TAP). Many of these are being integrated paralogues have been essential in reliably exploiting these

in the InTact database being developed by groups at the EBIrelationships to inherit functional information between ex-

(http:/lwww.ebi.ac.uk/intagt One of the most significantde-  perimentally characterised and uncharacterised genes. These

velopments has been the emergence of common identifica-developments have been very timely as revolutionary new

tion code (Uniprot ID) which will unite the various sequence technologiesin biology (e.g. transcriptomics and proteomics)

repositories (GenBank, EMBL, DDBJ) and facilitate map- are enabling studies to be conducted on a genome-wide scale

ping between all these resources. and generating vast datasets of proteins many of which are
In the light of these advances we have been developingstill experimentally uncharacterised. Applying bioinformat-

the BIOMAP resource, at UCL. This is a data warehouse ics and protein family/function databases to help interpret

that integrates protein family resources (CATH, Gene3D) this data should help in significantly reducing the amount of

with various functional databases (e.g. GO, COG, KEGG, experimental characterisation required and will allow us to

EC) to facilitate functional annotation of interesting genes benefit more fully from these new technologies.

identified by microarray analysis. Linking the protein family

resources to the functionally annotated genes allows us to

expand meaningful annotations that can be associated with
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