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Abstract

The last two decades have witnessed significant expansions in the databases storing information on the sequences and structures of proteins.
This has led to the creation of many excellent protein family resources, which classify proteins according to their evolutionary relationship.
These have allowed extensive insights into evolution and particularly how protein function mutates and evolves over time. Such analyses
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have greatly assisted the inheritance of functional annotations between experimentally characterised and uncharacterised genes. M
development of bioinformatics tools acts as a companion to the new technologies emerging in biology, such as transcriptomics and p
The latter enable researchers to analyse gene expression profiles and interactions on a genome-wide scale, generating vast datase
many of which include experimentally uncharacterised proteins. Protein family/function databases can be used to help interpret thi
allow us to benefit more fully from these technologies. This review aims to summarise the most popular sequence- and structure-bas
family databases. We also cover their application to comparative genomics and the functional annotation of the genomes.
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1. Introduction

Over the course of evolution, mutations in the nucleotide
bases of genes can result in numerous changes to the polypep-
tide chains they encode. In addition, substantial insertions
and deletions of residues may occur by various recombina-
tion processes. These evolutionary mechanisms have given
rise to families of proteins, which share a common ancestor
but often exhibit considerable divergence in their sequence
and structure. Frequently, this diversity is accompanied by
changes in protein function. However, some protein fami-
lies, such as the globins, retain a specific biological function
despite high sequence diversity.

The earliest database of protein families was pioneered
in the late 1970s by Margaret Dayhoff at the MIPS Insti-
tute in Germany and used to model the tolerances to differ-
ent amino acid substitutions occurring through evolution. A
plethora of protein family classifications have arisen over the
subsequent 20 years, affording interesting insights into evo-
lutionary processes. Moreover, they have provided compre-
hensive bioinformatics resources that may be used for inherit-
ing functional information from experimentally characterised
genes to their sequence or structural relatives. Powerful ho-
mologue detection algorithms are combined with manual val-
idation to supply information on evolutionary relationships
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(July 2004), compared to∼25,000 structures in the Protein
Databank[6].

The earliest protein family classifications exploited pair-
wise sequence comparison to detect evolutionary relatives.
However, these methods become unreliable in the so-called
‘Twilight Zone’ of sequence similarity (<30% sequence iden-
tity) [14]. Fortunately, the rapid expansion of the sequence
databases over the past 10 years has increased the populations
of the protein families, enabling the derivation of family-
based sequence profiles and motifs.

Protein motifs represent small, highly conserved stretches
of contiguous sequence, which may be associated with a par-
ticular evolutionary family or biological function. Searching
for these recurring ‘fingerprints’ is often successful where
global sequence similarity becomes unreliable. In a more
sophisticated way sequence profile methods, such as Hid-
den Markov Models (HMMs)[26] and PSI-BLAST[1], have
made it possible to capture the probability of certain residue
mutations and insertions/deletions occurring in the sequence
relatives of a given protein family[18,30]. These have been
shown to be highly discriminatory in identifying distant ho-
mologous relationships when searching sequence databases.

Despite the success of the new profile methods, very dis-
tant homologues often remain undetectable. Hence, most
sequence-based protein family classifications tend to group
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ds, such as BLAST. There is an ever-increasing amou
equence data being generated from high-throughput
ds such as genome sequencing projects, transcriptomi
roteomics. As a consequence, it is an impossible ta

unctionally characterise all proteins by experiment. As
s providing important data on evolutionary mechanis
rouping genes into protein families offers a valuable
ource for integrating information on cellular and molec
unction.

In this review we aim to describe the most widely u
equence- and structure-based protein family classifica
nd consider the benefits gained from integrating these
atabases of functionally annotated genes. To date, the
ources have been chiefly exploited to explore the e
ionary relationship between sequence, structure and
ein function. We shall summarise some of the key w
n genome annotation and comparative genomics and
iscuss the potential applications of protein family resou

n functional genomics and proteomics.

. Sequence based protein family classifications

Since protein structure determination is considerably m
ime consuming that gene sequencing, the sequence r
ories have always been several orders of magnitude l
han the structure databases. There has, in fact, been
onential increase in the sizes of both types of data

he early 1970s but the largest sequence database, Ge
5] still contains nearly one million non-redundant seque
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closely related sequences. Family members share signifi
sequence similarity and may possess similar or identica
ological functions. Many resources choose to cluster wh
protein chains. However, databases such as Pfam now ide
separate domains within genes, often detected using pro
structure data, and group them accordingly. Thus, one
may comprise several domains that are members of diffe
protein families. In reviewing the databases, we highlight
distinction between those which cluster whole protein ch
and those which focus on the domain level.

Table 1summarises the current populations of the m
jor sequence family databases and the methodologies
to create them. An important recent development
been the establishment of the InterPro Database ([35],
http://www.ebi.ac.uk/interpro) at the EBI, in the UK. This re
source integrates all the major protein family classificati
and provides regular mappings from these family resou
onto primary sequences in the UniProt database which
tains over 800,000 sequences as of July 2004. InterPro
Integrated Resource of Protein Families, Domains and S
is a collaboration that aims to provide an integrated inter
of protein signature databases. Databases in the colla
tion include UniProt, PROSITE, PRINTS, Pfam, ProDo
SMART, TIGRFAMs, PIR SuperFamily, SUPERFAMILY
and Gene3D.

2.1. Families of sequence domains

Pfam [4] is a highly comprehensive resource provid
an optimised set of Hidden Markov Model profiles for p
tein domain families. Families are defined using multi

http://www.ebi.ac.uk/interpro
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Table 1
Protein family resources

Resource Group Source(s) No. families Method URL

PRINTS Zygouri SWISSPROT, TrEMBL 1800 entries, 10,931 motifs Iterative motif searches http://bioinf.man.ac.uk/dbbrowser/PRINTS
Pfam Eddy SWISSPROT, TrEMBL 7459 families HMM http://www.sanger.ac.uk/Software/Pfam
SMART Bork Selected proteins 667 domains HMM http://smart.embl-heidelberg.de
ProDom Kahn SWISSPROT, TrEMBL 501,917 families (186,303

non-singleton)
PSI-BLAST http://protein.toulouse.inra.fr/prodom/current/

html/home.php
InterPro Zbobnov UniProt, PROSITE, PRINTS, Pfam,

ProDom, SMART, TIGRFAMs, PIR
SuperFamily, SUPERFAMILY

11,007 entries (including 2573
domains, 8166 families)

Multiple methods (HMM,
PSI-BLAST, regular
expression)

http://www.ebi.ac.uk/interpro

TIGRFAMs White SWISSPROT, TrEMBL 1976 families HMM http://www.tigr.org/TIGRFAMs/index.shtml
ADDA Holm SWISSPROT, TrEMBL, PIR, PDB,

WORMPEP, ENSEMBL
34,000 families (plus 60,000
singleton)

http://ekhidna.biocenter.helsinki.fi:8080/examples/
servlets/adda/index.html

CHOP Rost 62 complete genomes 63,300 clusters (plus 118,108
singleton clusters)

PSI-BLAST http://cubic.bioc.columbia.edu/services/CHOP

TRIBES Ouzounis 83 complete genomes 60,934 or 82,692 depending
on granularity

TribeMCL http://maine.ebi.ac.uk:8000/services/tribes

ProtoNet Linial SWISSPROT, TrEMBL User-defined BLAST http://www.protonet.huji.ac.il
SYSTERS Vingron SWISSPROT, TrEMBL, ENSEMBL

bidopsis
158,153 disjoint clusters BLAST http://systers.molgen.mpg.de/
(complete genomes), the Ara
 1
0
7

99

Information Resource, SGD and
GeneDB

iProClass Wu PIR, SWISSPROT, TrEMBL, Pfam,
BLOCKS, PRINTS, ProSite, PDB,
COG

36,000 PIR superfamilies,
100,000 families

N/A http://pir.georgetown.edu/iproclass

SWISSPROT Schneider Primary database 153,871 proteins N/A http://us.expasy.org/sprot
COG/KOG Natale 66 unicelluar and 7 eukaryotic complete

genomes
4873 COG, 4852 KOG Bidirectional best hit http://www.ncbi.nlm.nih.gov/COG

http://bioinf.man.ac.uk/dbbrowser/prints
http://www.sanger.ac.uk/software/pfam
http://smart.embl-heidelberg.de/
http://protein.toulouse.inra.fr/prodom/current/html/home.php
http://protein.toulouse.inra.fr/prodom/current/html/home.php
http://www.ebi.ac.uk/interpro
http://www.tigr.org/tigrfams/index.shtml
http://ekhidna.biocenter.helsinki.fi:8080/examples/servlets/adda/index.html
http://ekhidna.biocenter.helsinki.fi:8080/examples/servlets/adda/index.html
http://cubic.bioc.columbia.edu/services/chop
http://maine.ebi.ac.uk:8000/services/tribes
http://www.protonet.huji.ac.il/
http://systers.molgen.mpg.de/
http://pir.georgetown.edu/iproclass
http://us.expasy.org/sprot
http://www.ncbi.nlm.nih.gov/cog
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sequence alignments and HMMs and cover many common
protein domains and families. Pfam consists of two parts, the
first is the curated part of Pfam (Pfam-A), the second is an
automatically generated supplement called Pfam-B.

Similarly, simple modular architecture research tool
(SMART) [31] domain families have been selected with a
particular emphasis on mobile eukaryotic domains and as
such are widely found among nuclear, signalling and extra-
cellular proteins. SMART domain families are annotated with
function, sub-cellular localization, phyletic distribution and
tertiary structure.

COG and KOG are databases of clusters of orthologous
groups of proteins, defined by groups of three or more pro-
teins in complete genomes. KOG contains seven eukary-
otic genomes whilst COG contains 66 complete unicellular
genomes.

2.2. Families of whole protein chain sequences

TIGRFAMs [19] protein families are built in a similar
fashion to Pfam but also contain whole protein chains. Pro-
toNet developed by Linial and co-workers[53], uses alterna-
tives clustering methods to group in the UniProt database on
the basis of sequence similarity. Proteins from the TrEMBL
repository are later added into these initial protein clusters.
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related algorithm, CHOP[32] designed by Liu and Rost[32],
assigns domain boundaries by BLAST sequence comparison
and then clusters the subsequent domain-like fragments into
sequence families using the CLUP clustering method. Re-
cently, 62 completed genomes were chopped and clustered
into 118,108 single and 63,300 multi-member clusters.

There is an ever-increasing number of web-accessible se-
quence based classifications of protein families (seeTable 1).
The number of families identified by those performing auto-
mated clustering of large sequence repositories varies from
65,000 to 186,000 depending on the philosophy. Ouzounis
and co-workers[15] recently revealed that each newly se-
quenced genome leads to an increase in the total number of
protein families characterised. That is, currently a certain pro-
portion of genome sequences (between 10 and 25%) in every
genome are singletons, or belong to families not present in
other sequenced genomes. This may reflect limitations in the
current sequence based homologue detection algorithms; or
alternatively these may be genuinely novel families that have
arisen following speciation. The organism-specific families
may be important for expanding the functional repertoire and
phenotype of the organism, perhaps by providing new bio-
logical processes or changes in gene regulation.
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p ted,
he ProtoNet protocol can produce protein family clus
rom three different clustering methods: harmonic, geo
ic and arithmetic.

The PRINTS database[3] is a collection of protein ‘fin
erprints’: conserved sequence motifs used to characte
rotein family. These motifs are generated via multiple

ein sequence alignments by identifying regions of loca
uence conservation. They can subsequently be used to

arger sequence set (e.g. UniProt and TrEMBL[7]) to recruit
ew family members. The majority of families are defi
y multiple motifs and must all be present for a relative t
dded to the group.

The SYSTERS[27] and TRIBES[15] methods use grap
ased methods and Markov clustering respectively to g
te protein families of varying granularity.

A number of other resources exist that automatically c
er sequences from the completed genomes or from the
equence repositories (e.g. GenBank or Swissprot-TrEM
nto putative domain families. The ProDom resource[54]
ontains protein sequence families derived from sequen
niProt and TrEMBL. These protein sequences are cho

nto protein domains using an iterative PSI-BLAST dom
oundary prediction program.

Heger and Holm[21] recently developed the ADDA alg
ithm to cluster sequences into domain families. ADDA ta
lignments from all-against-all sequence comparison to
ne domains within protein sequences, which are then
ered into domain families. Recently, almost 800,000 n
edundant sequences were condensed into 100,000 d
amilies (33% of the families containing more than one m
er) covering all of the currently available sequence spa
a

. Structure based protein family classifications

Despite the advances in sequence comparison me
emote homologues in the ‘Midnight Zone’ of seque
imilarity (<15% identity) described by Rost, can still o
e identified through protein structure comparison[63,44].
herefore, structure-based classifications are becomin
reasingly important resources for recognising these d
elatives and providing datasets for more far-reaching a
es of protein family evolution.

The earliest protein structures were solved in the 1970
eposited in the Protein Databank (PDB,[6]). This resource
hich is now based in the Research Collaboratory of S

ural Biology (RCSB) Rutgers University, contains aro
5,000 protein structures comprising more than 60,00
ividual protein domains. Since the early 1990s, there
een sufficient structures to cluster evolutionary relatives
rotein families and superfamilies. This has given rise to c
rehensive hierarchical databases of protein structures
s CATH and SCOP, which rely on a combination of ma
xpert classification and structural comparison methods

In their pioneering analysis of protein structural famil
hothia and Lesk[8] first demonstrated the degree to wh
rotein structure appears to be more conserved than seq
uring evolution. This has been reaffirmed by recent an
es of larger structural classifications[39]. Fig. 1 shows the
elationship between sequence similarity and structure
arity for all homologous relatives in the CATH domain str
ure database. Many of the very distant relatives below
equence identity are paralogous relatives, arising from
lication of a domain within the genome. Once duplica
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Fig. 1. Correlation between structure similarity (measured by the SSAP
structure comparison algorithm, 0–100) and sequence similarity (measured
by sequence identity) for all pairs of homologous domain structures in the
CATH domain database.

the paralogous gene frequently evolves a new function. By
recognising such relationships, the structural classifications
have provided some important insights into the evolution of
protein function within protein families.

3.1. Recognising domain boundaries

As well as the recognition of very remote homologues,
structural data can help in determining the domain compo-
sition of a protein. Currently, approximately 40% of known
structures are multi-domain proteins and this proportion is
likely to rise as the techniques for structure determination
advance. It is difficult to recognise individual domains using
sequence data alone. However, Teichmann and co-workers
[2] have recently suggested from sequence analysis of com-
pleted genomes, that at least two thirds of proteins within a
genome are likely to be multi-domain proteins. This propor-
tion could be as high as 80% in eukaryotic organisms.

Many algorithms have been written for recognising do-
main boundaries from structural data. These often exploit the
fact that there are more contacts between residues within a
domain than between different domains. Others search for hy-
drophobic clusters that could represent domain cores. Many
domains have also been duplicated and combined with dif-
ferent partners during evolution. This forms the rational for
m ns in
n d do-
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s ost
c vali-
d ches

3

ily
d ethod

to detect similarities between evolutionary relatives. Struc-
ture comparison and alignment algorithms were first intro-
duced in the early 1970s and the rigid body superposition
methods developed then, by Rossmann and Argos, are still
used today for superposing structures and calculating a sim-
ilarity measure (root mean square deviation, RMSD). This
is achieved by translating and rotating the structures relative
to one other until the difference between putative equivalent
residues is minimised. Unfortunately, this approach runs into
problems when aligning distant homologues that may con-
tain extensive insertions and deletions of residues or shifts
in the orientations of equivalent secondary structures. There-
fore, more complex alignment algorithms based on dynamic
programming, secondary alignment and fragment compari-
son have been developed.

Initially, many protein structure classifications use rapid
secondary structure-based approaches to rapidly identify
putative relatives before applying slower, more accurate
residue based methods (e.g. GRATH—CATH database
[22]; SEA—COMPASS Database[48]). As with sequence
database searching, the value of many of these fast ap-
proaches is that they allow a large number of comparisons
to be performed from which a rigorous statistical framework
can be built for assessing the significance of any match[22].
There are far fewer secondary structures than residues and
s ions
c inate
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m hms
(
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t
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ethods that exploit domain recurrence to match domai
ewly determined structures against libraries of classifie
ains (e.g. PUU method[22]). As there can be considera

tructural variation in some protein families (see below), m
lassification resources (e.g. SCOP, CATH) manually
ate domain boundaries identified by automated approa

.2. Structural comparison algorithms

To facilitate the construction of structure-based fam
atabases, some groups have developed automated m
.

s

ince most insertions and deletions occur in the loop reg
onnecting the secondary structures, this helps to elim
he ‘noise’ created by the structural embellishments ar
rom divergent evolution of distant homologues. Howe
ore computationally intensive residue-based algorit

e.g. COMPARER[51]; SSAP [60]; STAMP [49]; DALI
23]; CE[54]) result in accurate structural alignments. Ra
han simply attempting to superpose equivalent residue
ween protein structures, many of these methods compa
nternal distances between residues within the same stru
o align residues with similar sets of internal distances.

.3. Protein structure classifications

The two major protein structure classifications, CATH
COP, focus on structural domains, classifying them
volutionary superfamilies. These are further organised
hierarchical schema, the top level of which corresp

o the protein class—the proportion of residues adoptin�-
elical or �-strand conformations. This gives rise to th
ajor classes, mainly-�, mainly-� and�–�, although SCO
ivides the alpha-beta class into alternating�/� and� + �, de-
ending on the segregation of�-helices and�-strands alon

he polypeptide chain.
Within each class, structures are further clustered into

roups when they possess significant structural similarit
hare the same fold, both the arrangement of secondary
ures in 3D and the connectivity between them shoul
imilar. The CATH database also recognises an interme
evel between class and fold in which structures are class
ccording to the orientations of the secondary structur



102 O. Redfern et al. / J. Chromatogr. B 815 (2005) 97–107

3D. This architecture level describes the shape of the struc-
ture (e.g. barrel-like or layered sandwich) and can be helpful
in imposing an additional level of order within each pro-
tein class. Finally, proteins adopting highly similar folds and
further evidence of an evolutionary relationship (e.g. simi-
lar sequence motifs or shared functional characteristics) are
grouped into the same homologous superfamily. Within these
superfamilies, proteins are often further sub-clustered into
families of close relatives possessing very similar functional
properties.

The SCOP database was established in 1993 by Murzin
et al. [36] and uses almost entirely manual validation for
recognising structural similarities between proteins to gen-
erate evolutionary superfamilies. Although time consuming,
this has resulted in a very high quality resource where domain
boundaries are also manually assigned. In the CATH database
[39], a combination of manual and automated approaches
is used. Robust structure comparison methods (SSAP[60]
CORA [40], GRATH [20]) have been developed to recog-
nise structural relatives; although evolutionary relationships
are only assigned following manual assessment of all avail-
able data. Several automatic methods are used for domain
boundary recognition but, again, assignments are all manu-
ally validated.Table 2shows that SCOP and CATH recognise
around 800-fold groups and some 1200–1500 superfamilies
i
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In contrast, the DALI domain database (DDD) establis

y Holm and co workers[12,13] uses a completely aut
ated protocol. Domain boundaries are recognised usin
UU algorithm[22] and domains are assigned to fold gro
nd superfamilies using the robust DALI structure comp
on algorithm[22]. Thresholds for clustering the structu
re based onZ-scores, calculated by scanning new dom
gainst all representative structures in the database. A
ellent web-based search engine at the EBI in Camb
http://www.ebi.ac.uk/dali) has been developed for scann
ew structures to identify putative relatives, which is wid
sed by structural biologists.

The HOMSTRAD and CAMPASS databases, constru
y Blundell and co-workers[34,55,56], are not hierarchica
ut focus on using SCOP, PFAM and other resource
luster together families of evolutionary relatives, o
ith high sequence homology. An additional feature

he provision of validated multiple structural alignme
or families and superfamilies that can be used to de
ubstitution matrices or to encode conserved struc
eatures in a template—these can be used to identify fu
elatives. The CAMPASS database groups more di
tructural homologues than HOMSTRAD by using
tructural comparison algorithms COMPARER and SE
enerate multiple alignments from SCOP superfamilies

Aside from resources that explicitly assign structure
old groups and superfamilies, a number of ‘neighbourh
atabases exist. These use automated structural comp
ethods to search the PDB for structural neighbours
uery structure. The Entrez resource at the NCBI use

http://www.ebi.ac.uk/dali
http://www-cryst.bioc.cam.ac.uk/~campass/
http://www.biochem.ucl.ac.uk/bsm/cath/
http://cl.sdsc.edu/ce.html
http://www.biochem.ucl.ac.uk/bsm/dhs/
http://www.ncbi.nih.gov/structure/mmdb/mmdb.shtml
http://www.ncbi.nih.gov/structure/mmdb/mmdb.shtml
http://www-cryst.bioc.cam.ac.uk/~homstrad/
http://scop.mrc-lmb.cam.ac.uk/scop/
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VAST algorithm to identify its structural matches. The PDB
has recently established a similar resource that uses the CE
algorithm to detect relatives and calculates a probabilisticE-
value for significance. Similarly, the Macromolecular Struc-
ture Database (MSD) which is the European node of the PDB
uses the SSM algorithm, to find putative relatives.

4. Assigning complete genome sequences to protein
families and exploiting this data in structural
genomics

Although relatively few protein structures have been de-
termined to date (∼4000 non-identical), recent genome anal-
yses suggest that we currently have structural representa-
tives for many of the most highly populated families in na-
ture [30]. Several groups have used Hidden Markov Mod-
els (SUPERFAMILY[17], Gene3D[30]) and combined pro-
file/threading based protocols[33] to assign sequences from
completed genomes to structural families in the SCOP or
CATH databases. Currently between 30 and 80% of se-
quences or partial sequences in a genome can be assigned
to a structural family in one of these databases, depending on
the organism and the technology used. A further 15–20% of
sequences can be assigned to families in the Pfam database,
s nces
c cu-
r

F
(

4.1. Sequence and structure based methods for detecting
distant homologues

As discussed in Section1, in order to recognise relatives
in the ‘Midnight Zone’ of sequence similarity, the most pow-
erful profile methods must be used. Perhaps the most widely
used profile-based method is PSIBLAST[1], although Hid-
den Markov Models generated using the SAM-T99 technol-
ogy of Karplus and co-workers[26] have recently been shown
to recognise a significant proportion of distant homologues.
Profile–profile methods[1] and Threading technologies are
even more powerful but are prohibitively slow for performing
large scale comparisons.

One of the most important developments has been the
introduction of benchmarking protocols to determine reli-
able thresholds for accurate homologue detection. These
approaches were originally pioneered by Chothia and co-
workers[42] and use datasets of carefully validated, remote
homologues, detected by structure comparison from both the
SCOP[42,18] and CATH structure classifications[50,44]).
Recent analysis, using the CATH domain database in June
2003, showed that approximately 83% of homologous pairs
with less than 35% sequence identity could be recognised
using the SAM-T99[26] approach.

Fig. 2shows that the families recognised in the genomes
f es
o vast
m few
uggesting that a very high proportion of genome seque
an now be classified in well-characterised and carefully
ated superfamilies.
ig. 2. Power-law like behaviour of families from (a) CATH domain database
d) protein families from the Gene3D database.
ollow power-law like behaviour. That is, for all typ
f families (e.g. CATH, Pfam, uncharacterised) the
ajority of families are small and only occur once or a
; (b) Pfam domain database; (c) uncharacterised domain families (NewFam) and
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times in a genome. By contrast, there are a small percentage
of extremely large superfamilies that occur many times
in a genome. Recent analyses of bacterial genomes using
Gene3D annotations has revealed that fewer than 30 CATH
superfamilies (<5% of the total number of superfamilies)
are responsible for almost 50% of the domain annotations to
genome sequences.

Many groups[18,30] have shown that a significant pro-
portion of the sequences unassigned to characterised fami-
lies (i.e. SCOP, CATH, Pfam) belong to very small protein
families or are singletons. That is they are not found in any
other species and may be contributing in some way to the
specific functional repertoire of the organism. Analyses of
the Gene3D database revealed that many of these sequences
are small and likely to consist of a single domain[30]. Rost
has demonstrated that a significant portion are predicted to
have low secondary structure content, suggesting that they
may only adopt a functional conformation on binding to an-
other protein and/or that they may be peptides involved in
regulation.

It is possible to use this genome annotation data and the
extent to which protein superfamilies merge once structural
data is acquired, to estimate the number of superfamilies and
folds in nature. Estimates range from a few thousand folds
to hundreds of thousands of superfamilies and folds depend-
i u-
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b the
n ered,
f sam-
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o d to
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c
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have
b ships

within individual protein families. It is outside the scope
of this review to consider all these analyses. However, the
success of the international genome initiatives, which has
led to the complete sequencing of nearly 200 genomes, has
recently enabled some interesting large scale analyses on
the distribution of protein families within and across or-
ganisms in the different kingdoms of life. Exploiting the
structural data in particular, allows more ancient evolution-
ary relationships to be tracked and can therefore give a
clearer picture of evolutionary trends. Below, we briefly con-
sider some of the insights gleaned over the last few years
by analysing the distribution of structural families in the
genomes.

The huge expansion in the sequence repositories together
with improvements in technologies for detecting distant evo-
lutionary relationships (e.g. PSIBLAST, HMMS, see above)
has led to the nearly tenfold expansion of the structural family
databases (SCOP, CATH) with sequence relatives from the
genomes (e.g. see SUPERFAMILY, Gene3D, see above and
Table 2). The additional functional information this brought
to these resources recently led to an evaluation of the ways in
which protein functions can be modified in family relatives
during evolution. More specifically, analysis of enzyme fam-
ilies showed that although close relatives (≥40% sequence
identity for single domain proteins,≥60% sequence identity
f nc-
t nce
c dur-
i

ch-
a
p pli-
c nce
w tner-
s eri-
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ng on the approach used[10]. As mentioned above, Ouzo
is and co-workers have shown that each sequenced ge
rings new protein families with no sign of saturation in
ear future. With new species constantly being discov

or example by shotgun sequencing of environmental
les, it is difficult to estimate an upper limit for the num
f protein families in nature. However, the trends observe
ate suggest that the majority of these will be small an
anism specific, whilst up to 70–90% of sequences with
rganism will be assigned to fewer than 2000 characte
rotein families (∼500 in CATH;∼1500 in Pfam).

One important use of these genome annotation reso
s to identify structurally uncharacterised superfamilies
re likely to possess a novel fold or function, so that thes
e targeted for structural determination. Structural geno

nitiatives are currently in progress in several countries
pproximately 500 new structures have been solved by

nitiatives over that last 3 years. Interestingly, although f
lies with no structural representatives were targeted,
5% of the structures were observed to be novel folds onc
tructures were solved. In the future, targeting the large, s
urally uncharacterised, Pfam superfamilies will help to
ide structural representatives for the majority of the gen
equences.

. Recent insights into protein evolution from
omparative genome analysis using protein structure
amily resources

Over the last two decades protein family resources
een used extensively to analyse evolutionary relation
or multi-domain proteins) were likely to share common fu
ions, in some families considerable functional diverge
ould occur between remote homologues or paralogues
ng evolution[63].

Todd et al.[63] performed extensive analyses of the me
nisms by which function changed in∼30 exceptionally
romiscuous CATH enzyme superfamilies. Following du
ation of a domain during evolution, functional diverge
as frequently associated with changes in domain par
hips of these paralogous domains. Differences in oligom
ation state were also observed. In some cases, resid
ertions had resulted in large structural embellishments
ad modified the active site or created additional intera
ites on the protein surfaces. Whilst in some relatives, m
ions of just a few residues in the active site were sufficie
ignificantly alter the function. Interestingly, these modifi
ions were mostly associated with changes in the sub
pecificities. By contrast, many features of the chem
erformed by the enzyme were conserved—for examp
hemical intermediate along a reaction pathway.

These observations were supported by several related
ses investigating the recurrence of structural familie
he small molecule, metabolic pathways ofE. coli [47,2].
he studies suggested that enzymes were often rec

o a new pathway during evolution, to provide a spe
hemistry, leading to a patchwork model of pathway e
ution (Horowitz model). Serial recruitment of homologo
nzymes along the same metabolic pathway, because
rovided similar active site geometries for binding s
trates/products of reactions, occurred much less frequ
Jensen model).
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More general analyses of domain family recurrences in the
genomes, pioneered by Teichmann and co-workers[2,30],
illustrated the extent to which domain duplication occurred
within genomes. Some families are much more extensively
duplicated than others, leading to the power-law like be-
haviour shown inFig. 2. These data mirrored the earlier
analyses of structural families in the early 1990s, which had
also revealed bias in the population of domain families. The
analysis of Teichmann’s and others showed that the most
commonly recurring families were often associated with im-
portant generic functions, such a providing energy or redox
equivalent for a chemical reaction. Other recurrent domains
were involved in information exchange and DNA binding.

Many of these analyses are dominated by sequences from
bacterial genomes as until recently there were only a few com-
pletely sequenced eukaryotic genomes. In July 2004, there
were still only 16 complete eukaryotic genomes available. A
survey of microbial genomes can therefore provide a statisti-
cally more reliable snapshot of the evolutionary mechanisms
occurring within this kingdom. Surveying some 90 bacterial
genomes, Ranea et al.[45] recently showed that although
there appeared to be around 200 structural superfamilies com-
mon to all bacterial genomes, a smaller subset of about 60 of
these were very massively duplicated, accounting for nearly
50% of the domain annotations in the genomes. In these fam-
i ased
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Fig. 3. The balance between expansion of metabolic families and regulatory
families with increase in genome size. The linear increase in the number of
domains primarily involved in metabolism are shown by the thick black line,
whilst the non-linear increase in the number of domains primarily involved
in regulation are shown by the dotted line.

the metabolic repertoire, the optimal balance between these
two types of families occurs in the most frequently observed
genome size for non-specialist bacteria. That is, bacteria hav-
ing no specialised dietary or environmental requirements.

6. Exploiting protein family resources to facilitate
analysis of functional genomics data

Studies investigating the extent to which function is con-
served between homologues are important for exploiting pro-
tein family resources to functionally annotate sets of genes
being studied in large scale functional genomics experiments
(e.g. transcriptomics and proteomics). As discussed above,
the results of several groups suggests that, for enzyme fam-
ilies, there should be at least 30–40% sequence identity be-
tween relatives to be reasonably confident that they share
a common or related function. For multi-domain proteins,
higher levels of sequence similarity (50–60%) may be re-
quired[63]. Obviously it is helpful to consider the domain
composition or architecture before inheriting functional in-
formation, as changes in this architecture can be clearly re-
sponsible for modulating protein function.

Protein family resources that provide information on do-
main partnerships are useful in this context. Recent versions
o ain
c
T ain
p fore
a and
l 3D
r ATH
a

for-
m mics
d stab-
l iProt
lies, the number of relatives found in any genome incre
ith genome size.
Detailed analysis showed that these superfamilies

redominantly associated with the COG functional categ
f metabolism and regulation. Although, some variatio

he functional categories was observed[45], the trends wer
ery clear. For metabolic superfamilies, the increase in n
er of relatives with genome size was found to be linear
as associated with a high duplication rate. In the su

amilies associated with regulation, a non-linear relation
as observed with a lower average duplication rate. T
ontrasting behaviours leads to a balance between the
lations of the two superfamilies (seeFig. 3) so that at a
iven genome size the number of regulatory families s

o outnumber the metabolic families.
This observation supports earlier hypotheses which

ested that in bacteria, gene duplication within metaboli
erfamilies, followed by functional divergence of these
logous genes, is a mechanism for expanding the func
epertoire of an organism and can give rise to new ph
ypes. However, the existence of multiple copies of a g
lbeit with slightly modified functions, can start to lead

noise’ and necessitates increased regulation. Thus the
inear increase in the regulatory repertoire may represen
rganism’s response to tempering this noise. It may also b
ociated with additional regulatory mechanisms for exp
ng the functional repertoire by controlling the express
nd activation of these paralogues in alternative ways.

Nevertheless, it is intriguing to note that if the increas
egulatory genes is viewed as cost that must be endured
er to benefit from the additional value brought by expan
f the Pfam website now provide information on dom
ompositions (http://www.sanger.ac.uk/Software/Pfam).
he MIPS resource in Germany also clusters multi-dom
roteins according to domain composition and is there
valuable resource for checking degree of homology

ikely functional similarity between proteins. In the Gene
esource, domain compositions are described by the C
nd Pfam annotations assigned to each protein[30].

Another important development in the use of bioin
atics resources to assist analysis of functional geno
ata is the plethora of specialised functional databases e

ished over the last decade. The enzyme (EC) and Un

http://www.sanger.ac.uk/software/pfam
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Fig. 4. The percentage of sequences in Gene3D that can be associated with a functionally-annotated gene by alignment, at a range of sequence identity cutoffs.

databases are widely used and provide useful and stan-
dardised functional descriptions. More recently, the gene
ontology (GO) developed by Ashburner and co-workers
[62] has played a significant role in producing a compre-
hensive and widely accepted scheme for describing func-
tion at different levels; molecular function, molecular pro-
cess and cellular localisation. A range of other databases
describing biological processes (KEGG[25], WIT [41])
and protein–protein, protein–ligand interactions has also ap-
peared (BIND, DIP, TAP). Many of these are being integrated
in the InTact database being developed by groups at the EBI
(http://www.ebi.ac.uk/intact). One of the most significant de-
velopments has been the emergence of common identifica-
tion code (Uniprot ID) which will unite the various sequence
repositories (GenBank, EMBL, DDBJ) and facilitate map-
ping between all these resources.

In the light of these advances we have been developing
the BIOMAP resource, at UCL. This is a data warehouse
that integrates protein family resources (CATH, Gene3D)
with various functional databases (e.g. GO, COG, KEGG,
EC) to facilitate functional annotation of interesting genes
identified by microarray analysis. Linking the protein family
resources to the functionally annotated genes allows us to
expand meaningful annotations that can be associated with
each query gene.Fig. 4 illustrates the extent to which func-
t fam-
i east
3 ase
( ents
t otein
i s-
s onal
c e of
B

7. Conclusions

The last two decades have witnessed significant expan-
sions in the databases storing information on the sequences
and structures of proteins. This has led to the creation of
many excellent protein family resources (seeTables 1 and 2)
which classify these proteins according to their evolution-
ary relationship. Analyses of protein evolution and in par-
ticular the manner in which function is modified between
paralogues have been essential in reliably exploiting these
relationships to inherit functional information between ex-
perimentally characterised and uncharacterised genes. These
developments have been very timely as revolutionary new
technologies in biology (e.g. transcriptomics and proteomics)
are enabling studies to be conducted on a genome-wide scale
and generating vast datasets of proteins many of which are
still experimentally uncharacterised. Applying bioinformat-
ics and protein family/function databases to help interpret
this data should help in significantly reducing the amount of
experimental characterisation required and will allow us to
benefit more fully from these new technologies.
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